|
|
|
|
|
|
|
1a. |
X • 0 = 0 |
|
1b. |
X + 1 = 1 |
|
Annulment Law |
2a. |
X • 1 = X |
|
2b. |
X + 0 = X |
|
Identity Law |
3a. |
X • X = X |
|
3b. |
X + X = X |
|
Idempotent Law |
4a. |
X • X = 0 |
|
4b. |
X + X = 1 |
|
Compliment Law |
5. |
= X |
Involution Law |
6a. |
X • Y = Y • X |
|
6b. |
X + Y = Y + X |
|
Commutative Law |
7a. |
X (Y Z) = (X Y) Z = (X Z) Y = X Y Z |
Associative Law |
7b. |
X + (Y + Z) = (X + Y) + Z = (X + Z) + Y = X + Y + Z |
Associative Law |
8a. |
X • (Y + Z) = X Y + X Z |
|
8b. |
X + Y Z = (X + Y) • (X + Z) |
|
Distributive Law |
9a. |
X • Y = X + Y |
|
9b. |
X + Y = X • Y |
|
de Morgan's Theorem |
10a. |
X • (X + Y) = X |
|
10b. |
X + X Y = X |
|
Absorption Law |
11a. |
(X + Y) • (X + Y) = X |
|
11b. |
X Y + X Y = X |
|
Redundancy Law |
12a. |
(X + Y) • Y = XY |
|
12b. |
X Y + Y = X + Y |
|
Redundancy Law |
13a. |
(X + Y) • (X + Z) • (Y + Z) = (X + Y) • (X + Z) |
Consensus Law |
13b. |
X Y + X Z + Y Z = X Y + X Z |
Consensus Law |
14a. |
X ⊕ Y = (X + Y) • (X + Y) |
|
14b. |
X ⊕ Y = X Y + X Y |
|
XOR Gate |
14c. |
X ⊕ Y = (X • Y) • (X + Y) |
|
|
|
|
XOR Gate (14a + 9a) |
15a. |
X ⊙ Y = (X + Y) • (X + Y) |
|
15b. |
X ⊙ Y = X Y + X Y |
|
XNOR Gate |
|
X ⊙ Y = X ⊕ Y |
|
15c. |
X ⊙ Y = X + Y + X Y |
|
XNOR Gate (15b + 9b) |